On Ramanujan-type congruences for multiplicative functions

نویسندگان

چکیده

The study of Ramanujan-type congruences for functions specific to additive number theory has a long and rich history. Motivated by recent connections between divisor sums overpartitions via in arithmetic progressions, we investigate the existence classification multiplicative theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan Type Congruences for a Partition Function

We investigate the arithmetic properties of a certain function b(n) given by ∞ ∑ n=0 b(n)qn = (q; q)−2 ∞ (q 2; q2)−2 ∞ . One of our main results is b(9n + 7) ≡ 0 (mod 9).

متن کامل

On multiplicative congruences

Let ε be a fixed positive quantity, m be a large integer, x j denote integer variables. We prove that for any positive integers N

متن کامل

Ramanujan type identities and congruences for partition pairs

Using elementary methods, we establish several new Ramanujan type identities and congruences for certain pairs of partition functions.

متن کامل

Ramanujan Congruences for Siegel Modular Forms

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.

متن کامل

An Algorithmic Approach to Ramanujan Congruences

δ|M ∏∞ n=1(1− q )δ = ∑∞ n=0 a(n)q n and three positive integers m, t, p, and which returns true if a(mn + t) ≡ 0 (mod p), n ≥ 0, or false otherwise. A similar algorithm for generating functions of the form ∏∞ n=1(1− q )1 (i.e. the case M = 1) has already been given in [3]. Our original plan was to implement that algorithm in order to prove some congruences from [1]. The algorithm we present her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas

سال: 2022

ISSN: ['1578-7303', '1579-1505']

DOI: https://doi.org/10.1007/s13398-022-01272-y